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The nonlinear dynamics of baroclinic wave ensembles 
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Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 

(Received 18 December 1979 and in revised form 2 April 1980) 

A theory is developed to describe the weakly nonlinear dynamics which applies in the 
simultaneous presence of several, long, baroclinic waves. The geometry is flat (i.e. 
p = 0) and dissipation is modelled by Ekman friction in the context of the quasi- 
geostrophic two-layer model. Three main problems are discussed. 

(1) For free, unstable waves it is shown that the wave which is realized in finite 
amplitude is not the linearly most unstable wave. Rather a longer wave, capable of 
achieving the single largest steady amplitude, is favoured in the competition for the 
potential energy of the basic state. This result is shown necessary if the end state is 
steady and numerous numerical calculations indicate the pre-eminence of the same 
wave if the final state is vacillatory. The notion of conjugate waves, capable of identical 
final amplitude, is also discussed. 

(2) If the free waves are subject to time-varying supercriticality so that intervals of 
stability ensue, the response is asymmetric over the period of the forcing. Sufficiently 
rapid ‘seasonal forcing leads to long-term aperiodic response. 

(3) If each wave in the spectrum is directly forced a wave hysteresis phenomenon 
occurs. Sudden jumps in the wave amplitude at critical values of the forcing are 
intrinsic to the wave response. Again, sufficiently rapid wave forcing produces an 
aperiodic response. 

The forced wave problem exhibits multiple equilibria. Each solution branch 
corresponds to a different dominant wave. The determination of the realized branch 
depends on the relative stability criteria developed for the free waves. 

1. Introduction 
The theory for the finite-amplitude behaviour of unstable baroclinic waves has 

usually focused attention on the dynamics of a single wave. Weakly nonlinear theories 
(e.g. Yedlosky 1970, 1971, 1972; Drazin 1970, 1972) allow such a restriction since 
within those theories the dynamics for a single-wave component becomes closed in a 
consistent way if the initid wave spectrum is limited to a single wave. This a priori 
restriction to a single wave in the initial conditions would be a more serious difficulty 
were it not for the frequent observation in the well-known annulus experiments of wave 
states containing essentially a single wave. 

Nevertheless the restriction to a single wave, i.e. a disturbance of a single wave- 
length in the downstream direction, raises certain important questions that the single- 
wave, finite-amplitude theories cannot alone address. Perhaps the most obvious is the 
question of which wave, at  a given parameter setting, is the most appropriate to 
examine in finite amplitude. Of course, the wave should be linearly unstable on the 
basic current but does the realized wave in finite amplitude have the wavelength of the 
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m,ost unstable wave according to linear theory? Although that wave will probably 
dominate the growing spectrum of waves initially, there is no reason to believe 
ultimately, as the zonal flow is altered by the waves, that i t  will remain the most 
successful predator of the potential energy available in the zonal flow. If linear theory 
is not a good predictor is there an alternative predictor that does not require explicitly 
testing the joint behaviour of an ensemble of waves? One of the purposes of this paper 
is to present a study of multiple-wave baroclinic dynamics to begin to answer these 
questions. 

A t  the same time certain other fundamental questions seem to require the formu- 
lation of a model capable of handling the simulta.neous presence of several waves. In  a 
fascinating experimental study, Buzyna, Pfeffer & Kung (1978) showed how cyclic 
variations of the imposed cross-stream temperature gradient produced both regularly 
periodic and also aperiodic changes of observed wavenumber. To some extent my 
study was motivated by the report of these experiments and I felt it was desirable to 
formulate a theory that could allow, in the initial data, several wavelengths and thus 
equilibrium states a t  some parameter values which contain at least two co-existing 
wavelengths . 

Finally, the problem of directly forced waves introduces dynamical issues that 
require a multiple wave theory. The finite-amplitude response of a set of waves to 
forcing a t  each wavelength in the spectrum depends on the collective response to the 
forcing. The amplitude each forced wave attains depends on the vigour of the forcing, 
the degree of instability at that wavelength and the nonlinear interaction of the wave 
with the zonal flow. The last effect in turn couples each forced wave with its fellows in 
the spectrum. This produces certain profound alterations in the dynamics. In parti- 
cular, the simultaneous presence of several waves yields multiple equilibrium states. 
Which of these (if any) are stable turns out to be very closely related to the first 
quest,ion posed in this section, namely which free wave is realized in finite 
amplitude. 

The next section discusses the model to be used to approach these questions. 
Section 3 discusses the nonlinear dynamics of free waves. Section 4 re-examines free 
waves in cases where the cross-stream temperature gradient or supercriticality is a 
slowly varying, cyclic function of time. Section 5 deals with the problem of forced 
baroclinic waves. Some final remarks and speculations are given in $6. While the 
detailed discussion of the results is contained in each appropriate section, I simply 
remark here that a central result of this paper is that although the single-wave theory 
may describe well the finite-amplitude dynamics of a baroclinic wave it is generally 
not the linewly most unstable wave that dominates the finite-amplitude problem. 
Thus single-wave theories should not, in general, focus on the most unstable wave 
according to linear theory. The aim of the following discussion is to describe why this 
is so and what the alternative finite-amplitude selection principle is for the deter- 
mination of the realized wavelength. 

2. Thernodel 
The physical and mathematical model is identical to that used in Pedlosky (1971). 

That is, a quasi-geostrophic, two-layer model, in a flat (p = 0) geometry is considered 
wherein the only dissipation is due to Ekman layers at the two rigid, horizontal, 
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bounding surfaces. The reader is referred to the earlier paper for a discussion and 
derivation of the basic quasi-geostrophic equations. 

If Ul and U, are the uniform, non-dimensional zonal velocities present in the upper 
and lower layers in the wave-free state, then the finite-amplitude problem for the 
disturbance stream function, #,, is 

($+ U, L) (V2$,+ ( - l)nF(q51- 4,)) - ( - l),F(U1- U 2 ) !!& ax = -rV24, 

-J($, ,  vz4,+(-l)np(4,-4,))+Qn, n = 132. (2.1) 

In  the above, the subscript n has values 1 and 2 for the upper and lower layers 
respectively. The parameter 

F = 4Q2Lz g - H  ( 2 . 2 4  I ?  
is the internal rotational Froude number. is the rotation rate, L is the width of the 
channel containing the flow, while H is the undisturbed depth of each layer. The 
constant density of the lower layer exceeds the density of the upper layer by the small 
amount Ap. The effect of friction is measured by the parameter 

r = E)/s ,  (2.2b) 

where E is the Ekman number and E the Rossby number. The nonlinearity is produced 
by the self-advection of potential vorticity in each layer, 

I 

84 a 
J ( $ m  9 v24, + ( - 1 PF(41- 9 2 ) )  = -$ {VZ$, + ( - 1 )“mh - $2)) 

--_ a { ~ ~ 4 , + ( - 1 ) , ~ ( 4 ~ - 4 ~ ) } ,  n = 1,2.  (2.2c) 
ay ax 

The single new term in (2.1) is a source term for potential vorticity in each layer, Q,. 
The source term may be due to heating, external surface stress or topographic forcing 
by the mean flow U,. The detailed specification of the agent producing the Q, is not 
required. It will suffice that the Q, can be partitioned into a portion independent of 
the downstream co-ordinate, x, and another portion which is periodic in x. Both 
components are functions of time and cross-stream co-ordinate y. Boundary conditions 
for (2.1) are 

while the x-independent portion of the stream field satisfies 

Linear theory (Pedlosky 1971) shows that a wave disturbance of the form 

4, = A eik(x*t) sin my (2.5) 
will be unstable if F exceeds the critical value 

a2 a2r2 
2 2LJ: k2’ 

Fc =-+- (2.Ga) 
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FIGURE 1. The schematic linear stability diagram for the internal, rotational Froude number 
F = 4Q2L2/g (Ap /p )  H vemw x wavenumber k. The stability cut-off for small k is due to Ekman 
friction. The large k cut-off is the Eady short-wave cut-off. For small friction the curve’s mini- 
mum approaches fnz near k = 0. For small supercriticality, A, above the minimum, the range of 
unstable wavenumbrr is O(A4). 

where 
a2 = k2+n2,  U, = -!j(U,-U&. (2.6b, c) 

The critical wave of F, versus k is shown schematically in figure 1. For small r the 
minimum value of Fc occurs for long waves near k = 0. Friction stabilizes the very 
longest waves while the short waves suffer the familiar Eady (1949) cut-off. At values 
of F below Fc the waves are damped by friction. Now for small r the minimum critical 
value of F is very nearly in2 .  If F exceeds this value by an amount A a range of un- 
stable wavenumbers in an O(A4) neighbourhood of k = 0 will be unstable if r d O(A). 
The theory to be developed pivots on this restriction. We will consider values of F 
such that 

for values of r which satisfy 

The waves which are unsta 

n2 
F = T + A ,  A < l ,  

r/lA/ = O(1). 

le are long waves, i.e. each of the-- wavelengths is 
O(A-4) times the cross-stream width. It may be helpful to the reader to think of an 
annulus with a narrow gap of width L and a mean radius 9. Think about the inviscid 
condition for instability. It is simply 



The nonlinear dynamics of baroclinic wave ensembles 173 

where m is the integral azimuthal angular wavenumber of the disturbance. The 
critical value for angular wavenumber n is given by (2.9) with n replacing m. Hence 

(2.10) 

Thus F,(n) will differ from Fc(m) by O(A) if L/W < O(A4). If wave m is supercritical, 
i.e. if P differs from FC(m) by O(A), wave n will also be supercritical as long as 
n2 - m2 = O( 1 ) and L2/g2  = O(A). Hence a small supercriticality in B near k = 0 can 
embrace a set of long unstable waves each slightly unstable (and each possessing 
a different linear growth rate). To exploit this fact further let us note that according 
to linear theory the growth rate for each of these waves will be kci(k).  Since k is O(A4) 
and ci is also O(A.)) (Pedlosky 1971), the evolution time for the unstable waves is 
O(A-') times the advection time. We therefore introduce the slow time 

T = lAlt (2.1 1) 

and for obvious reasons rescale x as 

X = 1A1'~. (2.12) 

To keep the theory as simple as possible, I restrict attention in this study to the 
case where 

(2.13) 

so that initially there is no mean flow. This implies that the linearly unstable waves 
are stationary. For the free wave problem (Q, = O ) ,  this involves no loss of generality. 
In  the final section I will discuss the effect of (2.13) on the forced problem. 

Since the waves turn out to be stationary, even in bite amplitude when Urn = 0, 
the Q,, may be .assumed to be functions of X, y, and T only. 

If 

where 

I further restrict attention to cases where Q, and QT are < O[(A)2]. 
Finally (111, and $,i are expanded in the asymptotic series 

$yt = alAl1 I$$!)  + I AJ + 1 A1 $b?) + . . .}, 1 
qb,* = a l A J l  {q4fi)+ lA/iq4j!)+ JAI$E)+ ...],j 

(2.1 6) 
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where a: is an O(1) scaling constant. If (2.16) is inserted into (2.15a,b) a sequence of 
linear problems are obtained by equating like orders in IAIi. The problems for #!:, 
and Qf!) are (from the O(A8) problem) 

(2.17 a) 

(2.17b) 

whose solutions, satisfying (2.3), are 

#&?) = 0, #$) = A ( X ,  T) sinny, F, = in2. (2.18a, b,c) 

The basic disturbance is primarily barotropic. Its cross-stream structure is taken 
to be the gravest cross-stream mode since higher cross-stream modes would be linearly 
stable and decaying due to friction. The temporal and downstream structure, as 
represented by the amplitude A, is yet an undetermined function of X and T. Since 
r is O(A) the critical value of Fc which occurs in ( 2 . 1 8 ~ )  is simply the inviscid criterion 
for long waves, as given by (2.9). 

The O(A) portion of (2.15b) implies that 

The function B must, by (2.19), satisfy 

aB 

(2.19) 

(2.20) 

which determines the X-shifted baroclinic component of the wave in terms of both 
the time rate of change of the barotropic field and the effect of dissipation on that 
barotropic field. The function $8) represents an order-A alterationof thex-independent 
stream function and is, to this point, undetermined. However, it is clear that we may 
always choose @$) so that, by definition, B has a zero average on the infiniteXinterva1. 

Since #$?) vanishes, the O(A) portion of ( 2 . 1 5 ~ )  merely implies that &)isarnultiple 
of @). Renormalization in that case allows us to satisfy ( 2 . 1 5 ~ )  to that order by simply 
letting #$) be zero. 

The problem for #$), as determined by (2.15a), is then 

(2.21) 
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If (2.18b), ( 2 . 1 8 ~ )  and (2.20) are used to evaluate the right-hand side of (2.21), 
we obtain 

(2.22) 

The x average of (2.22) yields an equation for @j?), the correction to the 2-inde- 
pendent stream function, i.e. 

where an overbar represents an average over the entire x interval. Equation (2.23) is 
the potential vorticity equation for the correction to the x-independent baroclinic 
field. The corrections are produced by both friction and the time dependence of 3 
as well as by the slow change imposed by the external source of potential vorticity. 

If (2.22) is now multiplied by sinny and integrated in y over the interval ( 0 , l )  we 
obtain 

An X derivative of (2.24) in conjunction with (2.20) yields the amplitude equation 
for A, 

Equations (2.23) and (2.25) comprise the governing equations for the disturbance 
field A(X, T) and the alteration of the mean field (€$,?). 

Define 

(2.20) c = UJ(2C)J = v, -, t = cT, Y = (U,/anK.) @i!' 
n 

and choose 
a = 7!J& (3.27) 
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Then the governing equations (2.23) and (2 .25)  become the neater set 

a u  =+&-;it+$ aA 7 2  A + ~ ( & - 2 ~ 0 1 ~ s i n 2 n y d y  a2A +--=-- la'' aH1 ( 2 . 2 8 ~ )  
aY* ) 2 a x 4  a x ,  

(2.283) 
a (" ~ ~ ] Y + V V  a v  = sin2ny 
at ay2- 

where 

In ( 2 . 2 8 ~ )  and (2.283) the physics of the long-wave problem is very simply exposed. 
The evolution of the disturbance amplitude A is governed by a partial differential 
equation since the spatial scale of A, i.e. the wave scale, contributes to the determi- 
nation of the growth. The disturbance contains all scales in X embraced within the 
valley of the critical curve in figure 1 and the growth rate is different for each wave- 
number within that valley and so a partial differential equation is the natural form 
for the relation between the time and space structure of the wave. The nonlinear effect 
in finite amplitude is solely the interaction of the wave-like disturbance with the 
mean field and the mean field in turn is determined only by the x average of A2. This 
is vital for what follows, In  spite of the fact that (2 .28a ,  b) is a nonlinear problem the 
nature of the nonlinearity just described allows a rigorous Fourier decomposition of 
(2 .28n)  ~~"ithowt truncation. That is, suppose Hl(X, t )  is represented by 

(2.30) 

where 4 denotes the complex conjugate of the preceding term. The factor k is intro- 
duced in (2 .30)  for subsequent convenience. k Y ( k )  then yields the amplitude of the 
potential vorticity source at  each wavenumber. We may similarly write 

A ( X , t )  = - d x A k ( t ) e f k X + * .  (2.31) 

The sums in (2.31) are over all k in the spectrum required to represent A and Hl and 
the sum may be finite or infinite depending on the particular problem. 

H l ( X , t )  = 2 C k Y ( k ) e i k S + * ,  1 

k 

k 

Since 

(2.32) 

the system (2 .28a ,  2.283) may be rewritten in its final form 

+ $7 - k2Ak (q( k )  - 2 lo1 f!!? sin 27ry d y  = - ka Y ( k ,  t ) , ( 2.33 a)  
d2Ak d A ,  

aY2 

(2 .33  3 )  

where A k2 
E = 1AkI2, q (k )  = - - - -7 ' /2k2 .  

k PI (2.34a, 3 )  

For each wave in the spectrum an ordinary differential equation links its dynamics 
to the dynamics of the mean field. The mean field, in turn, is affected by the total 
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0 0.2 ,0.4 0.6 0.8 1.0 1.2 

t k  f 
k=,,+ k =  1 

k - = ( l  - ( I  - q 2 )  4 +  ) k+=(1 + ( I  - q 2 )  ) 

FIQURE 2. The function q(k)  = 1 - #k2 - q*/2k2.  q is positive in the range 

and achieves its maximum at k = 7). The wave of maximum linear growth rate OCCUM at k = 1.  
The maximum Value of q is 1 - q.  This particular figure is drawn for the case q = 0.6. 

{l-( l -qz)&}# < k < { l+ ( l -qe ) t }k  

variance, E ,  of the wave field. Thus the waves interact with one another solely through 
the mean field. Each feeds on the mean and depletes its available potential energy and 
it is clear that the most voracious feeder will tend to crowd out less successful waves. 
However a precise characterization of a successful feeder in finite amplitude requires 
the further analysis of $3. Before moving to the next point some preliminary remarks 
about q(k)  are useful. 

Consider the linearly unstable case, A/lAJ = 1. Then q(k) ,  as shown in figure 2, is 
a positive function in the k interval 

(2.35) {l-(i-q2)i}i < k 6 {l+(i-r]2)#}4 

so that q(k)  > 0 requires r] = m/U,IA) < 1. The function q(k)  has its maximum at 

where 

The condition that q(k)  > 0 may also be written 

1 
k( 2 - k2)t 

7-1 > 7,' = 

(2.36) 

(2.37) 

(2.38) 

which in our new units is simply (2.Ga) rewritten with the shear (i.e. 7-l) RS the critical 
parameter. Eqcluation (5.38) reproduces, loc~ally, tho geoinetry of the wlley of figure 1 
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FIGURE 3. The local stability diagram ~ ; 1  = (k(2-k2)4}- ' .  Note that the minimum occurs at 
I; = 1, wnvc shown with the dashed line coincides with 
the wave of maximum growth rate k = 1. 

= 1 so that, at that point alone the 

in the vicinity of k = 0 .  Figure 3 shows v;*(k) .  The dashed line is 74, i.e. the locus of 
the k which maximizes q ( k ) .  The thin line is k = 1. The significance of these two 
distinguished wavenumbers becomes clear when we consider the dynamics of free 
waves. 

3. Free waves 
In this section we begin our investigation of (2 .33a ,  b )  in the free case where 

Z0 = Y ( k ,  t )  = 0. To begin with, let us first examine the linear problem where A ,  is 
small enough so that E is very small and Y, the correction to the mean field, is small 
with respect to q(k ) .  Then each wave in the developing spectrum satisfies the linear 
equation 

For growth at wavenumber k ,  q ( k )  must be > 0, i.e. A > 0. The growth rate for 
each wavenumber k is 

4- 
= - i ~ + !  2 4  [ f + 2 k 2 ( 2 - k 2 ) ]  . (3 .2b )  
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It is clear from ( 3 . 2 ~ )  that the linear growth rate shares its maximum with the 
maximum of kzq(k)  and not q (k ) .  This maximum occurs at k = 1 for all r ] ,  at which 

W (  1) = - $11 + 442 + qZ/4)*. (3.3) 

(3.4) 

For comparison, at  k = 74 where q(k )  is maximized 

49)) = - 87 + iH47 - &zr2)a-, 
from which it follows that w(1) > w(qB) for all r] < 1. The two growth rates coincide 
only as r]+ 1 where u+ 0, i.e. at the minimum critical value of 7-l. 

The significance of the maximum of q(k)  is revealed most clearly by the consideration 
of the steady finite-amplitude problem for free waves. For all 0 c 91 < 1, a steady 
solution exists. Whether it will be achieved as a result of arbitrary initial data remains 
to be seen but it is helpful to first examine the nature of the steady, free, finite- 
amplitude solutions of (2.33a, b). 

It follows from (2.333) that in a free, steady state 

-= a2y E sin 2ny 
aY2 

so that in the steady state ( 2 . 3 3 ~ )  becomes 

A,{!@) -q = 0. (3.6) 

Although E is the total wave variance it is, after all, simply a number independent 
of k. Hence either E = q(k)  for some k or else, for that k, A, must vanish. Since there 
are at  most two values of k, k, and k,, for a given q(k) ,  at most two waves can coexist 
as steady free finite-amplitude solutions. These waves have the same value of q, say 
q*, and their amplitudes satisfy (with A, real) 

A&+A& = q*. tf3.T) 

All other A, will be zero. Now the variance of the wave amplitude wid be a maximum 
if E corresponds to  the maximum of q(k) .  This occurs at the single wavenumber 
k = q* for which 

A ,  = (1 - q)*; k = $. (3.8) 

Thus the steady state with the maximum wave amplitude occurs as a state con- 
taining a single wave at the wavenumber q* which maximizes q(k). This does not 
correspond to the wavenumber of maximum linear growth rate, E = 1. The amplitude 
which is possible for the steady state containing only the linearly most unstable wave 
(k = 1) is 

or 
A,=, = q w  = (6(1-r2))) = (W+r]))*(l-r])* (3.9) 

Ak=l = (Hi +r]))*Ak=))t, (3.10) 

so that, for all r ]  < 1, the steady-state amplitude attainable bythe most unstable wave 
(that is, the wave with the largest growth rate) is always less than the amplitude 
attainable by the more slowly growing wave at k = q$. Note that, since 7 < 1, this 
latter wave, which maximizes the steady-state variance, is always longer than the 
wilvc of maximum lincar growth riltc. 
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Thus we have two distinguished waves. One, at k = 1, has the largest growth rate 

but a smaller steady-state amplitude than the wave a t  k = $, which has the largest 
possible amplitude in the steady state. Which of these two, if either, will be realized in 
finite amplitude? By (3.6) they cannot coexist. 

We can approach this question by examining the stability of each of the possible 
steady states to n small disturbance consisting of background noise of the other waves. 
Only a wave which is stable to small disturbances can be realized as the asymptotic 
steady state. 

Suppose our putative steady-state wave has wavenumber ku. Then 

A& = A,2(ks) = Es(k8) = q(k,). (3.11) 

When the steady state is perturbed the amplitude at ku will be 

A ,  = AS(k8) + ax,,(t) 

A ,  = a,(t), 
while, for all k # k,, 

where the uk ( t )  represent the small-disturbance amplitudes. 
Now in the disturbed state 

a v ,  
aYz 

IO1 dysin2ny- = E,(k,) = q(k,). 

For all k # k,, the linearized version of ( 2 . 3 3 ~ ~ )  (with Y ( k )  = 0) becomes 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

if (3.1 1) and (3.13) are used. If q(k) > q(ks) the amplitude of the disturbance at wave- 
numbers k # k, will grow. In that case the wave at wavenumber ks will not be stable. 
The only steady, linearly stable wave is the wave of maximum q(k) .  Thus, if a steady stute 
is attained the realized wave will not be the wave with the maximum linear growth 
rate. Rather the realized wave will be the wave of maximum amplitude, i.e. at  the 
wavenumber of maximum q(k) .  

Of course it is possible that in these circumstances the final state may not be steady 
so that the considerations just described are not applicable. That is, the wave of 
maximum amplitude may be stable to perturbations only in some small neighbourhood 
of the steady solution but unstable to initial conditions which start a considerable 
distance from it. Or, for small enough 7, the final statesmaybevacillatoryor aperiodic, 
in which case the selection principle for wavenumber based on the presumption of final 
steadiness is irrelevant. In  addition, only a small subset of k in the unstable interval 
might be allowed. If we think again of waves in an annulus the x wavenumber will be 
quantized and the attainable values of k may 'miss' both k = 1 and k = 7). In  this case 
we would suspect from (3.16) that the allowable wavenumber with the largest q(k) 
will be obtained even though k = 7) may not be allowed. Is this the case? 

To examine the general time-dependent problem numericalintegrations of ( 2 . 3 3 ~ ~  b)  
were performed as follows. 
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First define 
ay 

u ( y , t )  = -- 
ay'  

(3.17) 

where u( y, t )  is the correction to the mean thermal wind. It must vanish at  y = 0 , l  by 
(2.4),  which is accomplished by expanding u( y,  t )  in the Fourier sine series 

N 

A= 1 
u = un(t)sin(2n-1)ny. (3.18) 

Only the sines of arguments with odd integral multiples of ny are required by (2.333).  
The further convenient partition 

4(2n - 1 )  
un(t)  = n2(( 2n - 1)2 - 4) [(en - 1)2 + 13 { E  + v, ( t ) )  

allows the unforced version of (2.33a, b) to be written 

(3.19) 

( 3 . 2 0 ~ )  

- 1 )2 + 2)  - (2n - 1 )2 V,  
(2n -  1)*+ 1 

( 3 . 2 0 ~ )  

where 
E = Z A f .  

k 

The sum in (3.18) should, in principle, be an infinite sum. Considering the rapid 
convergence of the sum in (3.203), I found that taking twelve terms in (3.18) sufficed 
(i.e. up to the sin 23ny term). 

At t = 0, Ak(0)  and dAk(0)/dt are specified, and, since u( y, 0) = 0, 

C(0) = -E(O). (3.21) 

If both A ,  and dA,/dt are zero at t = 0 for some k, then that A,  will remain zero. 
Hence the number of waves to be carried in the calculation depends entirely on the 
initial data. In  the calculations reported here either one, two, or three waves are 
considered. 

Recent results by Pedlosky & Frenzen (1979) show that the single wave form of 
(3.20a, b, c) exhibits a rich range of behaviour as a function of r ] .  The dependence on 7, 
especially when r] is small, is quite complex and sensitive to  tiny changes in r ] .  In  this 
paper only a relatively few values of r ]  are examined and so it must be borne in mind 
that there are undoubtedly some aspects of the transient dynamics left unexplored. 
Since for these long waves we have chosen T to be quite small (O(A)) most of our 
attention will be focused on the situation where r] is O( 1 )  (but less than unity). 

Figure 4 shows the result of the equilibration of a Single wave with k = 0-5 at 
r] = 0.5. The equilibration occurs relatively swiftly, at t - 40, and the final value, 
A ,  = 0.6123, is precisely&(O.5). Figure 5shows theevolutionofa three-wavespectrum. 
Each amplitude initially is set at A ,  = 0.1 with dA,/dt = 0. The three wavenumbers 
(kl, E,, k,) are (1,0.75,0.5). We see from the figure that the most unstable wave A,, 
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FIGURE 5. The amplitude history of the three-wave spectrum (kl, k,, k,) = (1,0-76, 0.6) 
corresponding to qa = (0.376, 0.496, 0.376). The k = 1 wave has the largest linear growth rate 
and initially attains the maximum' amplitude. The suviving wave is the second wave, i.e. the 
wave of highest q, and the other two waves eventually vanish. 

initially dominates the spectrum. It grows most rapidly and until t - 10 (about 
10 linear e-folding times) maintains the largest amplitude. However, beyond t - 10 
the second wave, Ak,, dominates the amplitude response and the amplitude of the 
most unstable wave plunges to zero and effectively vanishes after t - 30. The third 
wave, with k = 0.5, which was the equilibrated wave of figure 4, rises slowly above its 
initial amplitude and then slowly declines toward zero. The k = 1 wave is the most 
unstable wave according to linear theory, i.e. has the largest growth rate. Its value of 
q, q ( 1 )  is 0.375 for this q.  The wavenumber of maximum q, q*, is 0.7071. The second 
wave, with k = 0.75, is the closest to this peak and has a q of 0.4965whichexceedsthat 
of the first wave. 

The third wave is the conjugate wave to the first. That is, it is the wave with the 
same value of q as the first wave. It is a simple matter to show from (2.34b) that the 
wavenumbers of two conjugate waves, say k, and k,, must satisfy 

k,k3 = 7. (3.22) 
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FIGURE 0. The amplitude history of a two-wave spectrum in which the two waves are conjugates, 
i.e. they have the 881138 q. The end state is a mixed wave state whose relative proportions depend 
on the initial data. In the case shown, 7 = 0.5, k, = 1, k, = 0.5, A,(O) = A,(O) = 0.1, while 
dA,(O)/dt = dA,(O)/dt = 0. 

The conjugate wave at k, has the same q as the wave at k,, but its growth rate is less 
(since the growth rate depends on k,q(k)). Hence it never achieves even the transient 
prominence that A ,  does. Note, however, that, during the decay phase of A,, and 
A,*, the third wave survives longer. Nevertheless, in the end the sole survivor of the 
competition for the available potential energy of the mean flow is Akr, which is the 
wave in the spectrum with the largest q(k). Note that it is not necessary that k, should 
precisely equal r]*, only that its p(k,) should exceed all other available q(k). The results 
of this calculation are typical of many numerical integrations with different initial 
conditions and different 7 as long as 7 is O( 1). In each case, when equilibrium is attained 
the sole surviving wave is the wave of maximum q and not the most unstable wave. 

Consider now the case where, perhaps because of quantization of k, the wavenumber 
of maximum q is not attainable and only two waves at k, and k, are allowed to the 
unstable spectrum. The dominant wave in equilibrium will again be the wave of 
maximum q and whether it is the wave with k, and k, will of course depend on 7. 
Suppose 7 is altered from cme to case until finally 7 takes on the value given by (3.7) 
so that k, and k, are conjugate waves. Then we have no prediction from (3.16) as to 
which wave will survive, while the result of the steady-state theory (3.7) predicts only 
the total variance of the two-wave field and not the partition of amplitude between 
them. Figure 6 shows the result of a numerical calculation with two waves for which, 
at t = 0, A,, = Aka = 0-1 for k, = 1, k, = 0.5, and r ]  = 0.5 80 that the two waves are 
conjugates. The end state is now a mixed wave state with both k, and k, present. The 
larger final amplitude is A,, - 0.57 while A ,  N 0.22, which satisfies (3.7) with 
q = 0.375. Hence in this case the dominant final wave is the most unstable wave since 
we have restricted attention to a spectrum where the k = r]* is disallowed and the 
conjugate waves have the highest q. Extensive numerical calculations show for the 
conjugate wave case that the partition of the final variance between the two conjugate 
waves is 9 function of initial conditions, e.g. of the ratio Ak,(0)/Ak,(O). It is easy to 
imagins R situation where, for a range of r ]  and a quantization of k, only k, and k, are 
allowe& Then if 7 does not satisfy (3.22) either k, and k, will be the realized wave. 
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FIGURE 7. The evolution of a two-wave set. The final state shows A, in a limit cycle while 
A ,  + 0. In this case 7 = 0.01, k, = 1 (corresponding to the most unstable wave, q, = 0.49996) 
and k, = 0.5 (correspontiing to a q, = 0.8748). Although steady state is not attained the 
asympt.otic 8t.at.e contains only the wave of higher q. (a) A , ( t ) ;  ( b )  A&). 
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Which of the two is realized depends on q(k,) and q(k3). Suppose k, > k,. Since 

(3.23) 

q(k3) will exceed q(k,) if7 c k,  k, while q( k,) will exceed q(k,) if7 > k 1 4 .  As 7 approaches 
the value k, k, the waves become conjugate but the final amplitudes will depend on the 
amplitudes present in the initial state and this will depend on whether 7 has been 
previously larger or smaller than k,k,. Thus even in the free wave case the presence of 
conjugate waves implies a hysteresis effect in the observed wave field depending on 
the direction of change of 7. 

When 7 is decreased to much smaller values the adjustment time required to achieve 
equilibrium increases. I have not here sought to precisely define the value of q 
required to achieve complete, perpetual unsteadiness. Preliminary calculations 
indicate that this must, to some as yet undetermined extent, also depend on the 
spectrum of wavenumbers allowed and the initial data. However, figure 7 shows a 
numerical integration of a two-wave case with 7 = 0.01 and k, = 1 and k, = 0.5. 
Again the kl wave is the most unstable according to linear theory. Since 7 < k,k3, it 
follows from (3.23) that q(k,) > q(k,). The calculations were continued to t = 1000. 
A steady state was not attained. Rather, an apparent limit cycle behaviour for A, 
was realized while Ak,, after considerable oscillation, vanished. Thus even in the absence 
of Jinal steady states the surviving wave is the wave of maximum q(k) ,  a result that could 
not be predicted on the basis of the theory leading to (3.16). So far, these results are typical 
of all the numerical calculations conducted. 

This inescapably suggests that although a single wave theory may be relevant for 
the study of the finite-amplitude dynamics of baroclinic waves the appropriate single 
wave to consider is not the most linearly unstable wave. Rather the wave to consider i s  
the wave which, were it alone, wudd achieve the muximum steady-state amplitude. This 
criterion is unfortunately a nonlinear one. However it is important to recognize that 
it is a criterion that can be applied to  the result of single wave calculations. In short, 
consider the finite-amplitude dynamics of a wave of arbitrary wavelength. Find its 
steady amplitude. Maximize it with respect to wavelength. The heuristic theory 
developed here indicates that that wave will be the realized wave in finite amplitude 
even if the asymptotic state is unsteady. 

Thus a linear instability calculation is not, by itself, a good predictor of the finite- 
amplitude observed wave either as to its wavelength or vertical structure. Any 
deficiency of the predictions of linear theory based on a selection principle of maximum 
growth rate does not imply that the wave field does not spring from a baroclinic 
instability. It only means that the selection principle for the wave is fundamentally 
nonlinear. The linear selection principle will be valid only initially, or, of course, in 
the limit where the supercriticality goes to zero so that only one wave is unstable. In  
that limiting case and in only that case the wave of maximum q and the wave of 
maximum growth rate coincide. 

4. Free waves with time-dependent zonal heating 
The adjustment time to mark equilibrium, especially for 7 Q 1, is quite long; even 

st, 7 = 0.5 in the preceding exarnplw it requires about 40 linear e-folding times to reach 
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steady state. With an atmospheric application in mind it is natural to ask how long- 
term changes in the store of available potential energy affect the picture developed in 
the preceding section. How will changes in the x-independent vertical shear produced 
by, say, seasonal changes affect the finite-amplitude wave state ? 

To study this problem it is necessary to return to (2.33a, b) and examine the nature 
of its solutions in the case when Zo # 0. Now a constant value of Zo can be absorbed 
directly in the supercriticality. This is a simple fact left for the reader to derive. Hence 
only time-dependent Zo with zerotime average need be considered. It is somewhat less 
obvious, but also true, that the effect of time-dependent Zo is equivalent to the 
consideration of an effective q(k )  which is time dependent. Although this can be shown 
in general it is sufficient for the purpose of this paper to consider forcing fields such that 

(4.1 ) so = 2, sin B, t cos 7ry. 

Then the solution for Y may be written 

[&'I sin Bot - Bo COB B,t + B,e-t/zt] cos ny + 'r, ( y, t ) ,  (4.2) 
- 2 0  

2n2(B, + 'I2/4) 
Y =  

so that (2 .33a,  b) may, in turn, be rewritten 

(4 .3b)  

where 

Thus the problem with variable zonal heating can conceptually be directly relaied 
to the problem with no zonal forcing but simply a time-varying supercriticality A(t) 

The virtue of considering the problem in this light is as follows. The wavenumber 
which maximizes @,t) is again k = '14. This feature is unchanged by the time 
dependence, i.e. 

(4.6) 

whose dependence on k is the same that of q(k ) .  However, the wavenumber of quasi- 
steady growth rate will depend on A@). That is, the maximum of k2q(k, t )  will occur at  

i i ( t )  k2 

14 2 
q(k, t )  = ----@'/2k2, 

Of course when q is time dependent the simple notions of linear exponential growth 
are not valid, but if &t)  changes slowly enough we can anticipate that linear theory 
would suggest k,,,(t) 8.8 a quasi-steady scale predictor. It should be noted that ku(t)  
can only coincide with '14 if, as before, the supercriticality at kw tends to zero, i.e. only 
when ij(ko,, t )  -+ 0, and then all the waves are stable. 
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FIGURE 8. The evolution of the three waves with wavenumbers (I ,  0.75, 0.5) at 71 = 0.5 subject 
to periodic supercriticality. The asymptotic state again contains only the highest q wave. The 
intervals of quasi-steady stability are indicated by the symbol S. Note t8he steep rise after the 
onset of instability and the following slow decline. Upper panel, A,(t);  middle panel, A#); 
lower panel, A&). 

. 
To examine the nature of the response of free waves to variable zonal heating 

numerical integrations of (2.33a, b) were carried out with Y(k, t )  = 0 and So given by 
(4.1). This is equivalent, naturally, to integrating (4.3a, b). Again, the same spectral 
formulation was applied to (4.3 b), whose spectral form becomes 

] + 8,,(2.35619) Zosin B& ( 4 4  
E ( ( 2 n -  l ) 2 + 2 } - ( 2 n -  

dt 

while A, is calculated from (3.20a, b). In  (4.8) 

Snl= 1, n =  1, 

= 0, n > 1. 

Figure 8 shows the response of a three-wave spectrum, where 

(k1, k2, kJ = (1,0*75, 0.5), 

(4 .9)  

for the case r] = 0.5, B, = 27r/100, and 2, = 0.35. The period of the oscillation of So 
is thus about 100 linear e-folding times. As figure 8 demonstrates the sole surviving 
wave in finite amplitude is the wave of largest 9, which again occurs for k = 0-75. 
The other two waves, including the wave of maximum linear growth rate, appear only 
fleetingly and then forever disappear. With the value of 2, chosen, all three waves have 
intervals during which the supercriticality is negative. That is, wave 2, the survivor, 
has periods during which, according to a quasi-steady theory, it would be stable, 

7 P L U  102 
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FIGURE 9. The evolution of two conjugate waves k ,  = 1, k ,  = 0.5, 7 = 0.5 subject to periodic 
supercriticality. The wave with the larger linear growth rate asymptotically vanishes. Upper 
panel, A,( t ) ;  lower panel, A,@).  

T 

i.e. intervals over which q(k2, t )  < 0. For the dominant k ,  wave this interval exists as 
an epoch centred around the peaks of Po, i.e. at 

t 
100 
- = (j+I-) j = 0 ,1 ,2  ,...) 4 ,  

while the interval around the peak of quasi-stability is 

At - N 0.24. 
100 

(4.10) 

(4.1 1 )  

Thus, the basic state is 'stable' roughly one quarter of the overall cycle. The stable 
intervals are indicated in figure 8 in the graph for A,$. After an initial transient period a 
forced, nonlinear oscillation in the dominant amplitude occurs, whose period is 
identical to the forcing period. The response is w r y  strongly skewed in time. Directly 
after a period of quasi-steady stability gives way to  instability there is a sharp rise in 
the amplitude. It swiftly reaches its equilibrium amplitude whose maximum is well 
predicted by the maximum value of {Q( lc2 ,  t)}i during the cycle. As q declines slowly, 
.Akz similarly slowly declines and follows the quasi-steady equilibrium value quite 
closely. It reaches its minimum during the stable period and then responds swiftly to 
the recurrence of instability to renew the 'seasonal' cycle. It is once again true that a 
single-wave theory is apt for the asymptotic wave dynamics but it is also true again 
that the selection principle picks out the wave of largest q ( k )  and not the wave of 
greatest growth rate. 

A particularly interesting phenomenon occurs when two conjugate waves experience 
a changing supercriticality. The reader will recall that when 2, is zero the end result 
of the calculation, as shown in figure 6, is a mixed wave state. When the initial ampli- 
tudes of the two waves are equal the final mixed state is dominated by the more 
linearly unstable wave. Figure 9 shows the result of the same parameter setting with 
the addition of variable zonal heatJing. In this case 2, = 0.2644, R, = 27~1200 = 0-0314, 
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is shorter. Upper panel, A,( t ) ;  lower panel, A,(t) .  
FIGURE 10. As in figure 9 but the interval of subcriticality is briefer and the 'seasonal' period 

Y,I = 0.5 and the conjugate waves have wavenumbers (kl, kJ = (1,0.5). With these 
values of 2, and B, the criticality is negative during roughly 18% of the cycle (whose 
period is 200). We observe that slowly, over several cycles, the most unstable wave 
disappears and the final state consists of the quasi-steady forced oscillation of the 
conjugate wave with the louer growth rate. This result is typical of the calculations 
over a considerable range of 2, and B, for 91 = 0.5 as long as there exists at  least a 
brief period of subcriticality (i.e. < 0). Figure 10 shows another example for which 
Z, is less (0.223) and B, greater (0.1256) so that the interval of stability is about 3 to 4 
times briefer. The same qualitative result reappears. 

The explanation for this rather remarkable fragility of the more unstable of the 
conjugate wave to the occurrence of subcriticality is more clearly displayed in 
figure 10. In periods of instability there is a rapid rise in amplitude and the time scale is 
determined by the intrinsic instability dynamics. After obtaining quasi-equilibrium 
the waves begin their decline during the stable phase at the slower rate determined by 
the time scale of H,. It is apparent in figure 10 that the wave with the larger k2q(k) is 
more sensitive to the decay phase. At each subcritical period its amplitude plunges to 
smaller and smaller values and never fully recovers during the growth period. The 
more sluggish wave declines more slowly and is better able to rebound during the 
growth phase of the cycle. We can make this argument more quantitative by exploiting 
the relative slowness of the time changes during the declining portion of the cycle. For 
the two conjugate waves whose q's are equal, (4.3~~) rnny be written during the decline 
period approximately as (with Y, = O ) ,  

7-2 
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FIGURE 11. As in figures 9 and 10 but in this case the supercriticality is always positive over the 
cycle and both conjugate waves are present in the asymptotic state. Upper panel, A,@);  lower 
panel, A&). 

Since ij(k,) = ij(k,) the ratio of the two equations yields 

or 

i d  I d  
--lnAkl = --lnAkz 
k2, dt k! dt (4.13) 

(4.14) 

where Ak(tm) is the amplitude of the k wave at its maximum. Recall that (4.12a, 21) 
and (4.14) are presumed valid only during the slow declining phase of the amplitude, 
in which case, for each wave, Ak/Ak( tm)  is a number less than one. Since k,  > k,, 
(4.14) shows that the wave with the larger k will decline more strongly with respect to 
its maximum. That is in each decay cycle Akl/Ak,  (t,) 4 Ak2/Ak,(tm) a t  the minimum. 
As noted above this will continue until the larger k wave is too small to recover in the 
growth cycle. This rationalization is perhaps made more convincing by the calculation 
shown in figure 1 1. In this case 2, = 0.1, B, = 2n/50 and the criticality is always > 0. 
The end state is a periodic, mixed state wherein both conjugates can now exist. 

When 7 is reduced the dynamical memory of the system increases and residual 
perturbations from a previous epoch can persist to grow up again. Figure 12 shows a 
two-wave case for constant supercriticalityfor 7 = 0-077.Note that about 100 e-folding 
times are required to expunge A ,  ( k  = 1) while A ,  ( k  = 0.5) equilibrates slowly after 
many oscillations whose ‘natural’ period is about 30 t units. 

Figure 13 shows the very striking result attained with the same two, non-conjugate, 
waves in the presence of variable supercriticality. In  this example 2, = 0-223 and 
B, = 0.052 so that the period of the ‘seasonal’ cycle is about four times the natural 
period of A ,  (k = 0-5) deduced from figure 12. For the length of the calculation (500 t 
units) the results indicate an aperiodic mixed wave response. The wave with the larger 
q, k = 0.5, is dominant and as it grows during the unstable epochs the wave with the 
larger growth rate declines. The latter does not completely disappear since q is so small 
and when the period of growth recurs it briefly springs up. It never reaches the ampli- 
tude of the higher q wave but it also weakly persists. The advent of the unstable 
period occurs regularly but the amplitudes and phases of the Ak’s still remember the 
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FIGURE 12. The evolution of two waves. 9 = 0.077, k ,  = 1 (the most unstable) and k, = 0.5. 
The supercriticality is constant (i.e. 2, = 0). The final state contains only A(k, ) .  Upper panel, 
A ,  ( t )  ; lower panel, As(&). 
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FIGURE 13. The aperiodic response of the two waves A,,  A,  with wavenumbers k, = 1, k, = 0.5. 
Zo = 0.223 niitl the forcing pcriotl is 120 r-folding times. 11 = 0.077. Contrast, this aperiodicity 
iuidcr R ~ O W  Ix.riodic forcing wit11 tlic complotclg prctlirti~l~lc asymptotic state in figire 12. (a) A,(t) ,  
@) A N .  

previous cycle, and are each time slightly altered. This gives effectively different 
initial conditions for each growth period and hence the consequent aperiodicity. It is 
important to stress the consistency of these results and the Yij  = 0 calculations for 
which the wave of smaller q ( k )  ranished. The same process is a t  work here but the 
combination of small clissipation and variable supercriticality prevents the attain- 
ment of complete asymptotic eqiiilibration. A calculation for the identical parameters 
but with B, increasiiig so that the seasonal period is reduced by a factor of 4 to 
about 30 t units leads to  the rapid disappearance of the k = 1 wave. I n  that case the 
frequency dependence of (equation (4.5)) reduces the aniplitudeof the time-variable 
portion of and the qualitative results of the steady problem re-emerge. It would be 
of interest to examine the parameter dependence of the small 7 cases more completely 
to  determine the regions of mixed, aperiodic wave states but that parameter study is 
not yet completed. I t  is also possible that nfter a very long time the single-wave state 
may re-emerge. 

5. Forced waves 
I n  the previous sections it became clear that there was a natural tendency for the 

ware spectrum of free waves to sharpen around the wave with maximum q ( k ) .  Indeed, 
in most cases all the waves except the wave (or conjugate wares) with the largest 
accessible q(k )  eventually vanished. This leads naturally to single- or at most double- 
wal-e end states with a rather simple dynamical structure. 

However, when wave forcing exists, i.e. when each wave in the spectrum is forced to 
be iioii-zero, the dynamics becomes inherentl?. mnlti-waved. The behariour of the 
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multi-ware response to the forcing is rather complex because the amplitude response 
depends on the total wave variance E and this nonlinearity introduces the possibility 
of several states of response for the same forcing. 

This can simply be seen by first exaniining the steady forced problem. With Y ,  
independent of time and Z0 equal to zero steady solutions are possible. For these 
steady solutions (3.5) will still apply, but now the steady version of ( 2 . 3 3 ~ )  yields, 
instead of (3.6), 

(5.1) 

for each wavenumber k. Since E = x.4: equation (3.9) is a coupled set of algebraic 

equations for all the waves. Momentarily let us assume that Y,/(q(k) - E) is alwkiys 
bounded (as it turns out to be). Then solving (5.1) for A ,  yields 

A,(q(k) - E) = Y ,  

k 

A ,  = Y,/(q(k)  - E l ,  (5.2) 

so that (5.3) 

which is a single equation for E .  Once E is determined each A ,  is found from (5.2). 
Note that, if Y ,  = 0, A ,  can differ from zero only if E = q ( k ) .  

It is helpful to write 

Yk = RkY (5.4) 

so that R, gives the projection of the forcing on each wavenumber. It is illuminating to 
first consider (5.3) as an equation for Y in terms of E.  The basic structure is already 
revealed in the three-wave case, i.e. when only Rkl, RkB and Rks are different from zero. 
In that case 

In (5.5) the short-hand notation 

qj = q(kj), 
has been used. The generalization of (5.5) to N waves should be obvious. 

A graph of Y versus E will show a zero at E = 0 and a zero at each qn > 0. This is 
simply a restatement of the fact that free, ( Y  = O ) ,  steady waves can exist if E equals 
one of the y(kj). For large E, Y - E:/(R;+ RE+ ... + Rk). A graph of Y versus E for 
thetwo-wavecase(H, = R, = 1, R3 = O ) , q  = 0.5,k, = l , k 2  = 0.75isshowninfigure14. 
For large Y and hence large E the Y ,  E relationship is single-valued. However, for 
Y 6 0- 104 three solutions for E exist, while for Y < 0.04 five E solutions are possible. 
In general for N waves, M of which have their q's > 0, there is a 2M + 1 multiplicity of 
solutions. That is, there are 2 M +  1 separate branches, for the function E( Y) .  In 
figure 14 they are numbered sequentially. The branches are separated by either zeroes 
of Y(E) or zeroes of the derivative dY/dE. Each branch of E corresponds to a distinct 
branch of the steady solution, A k (  Y ) .  In figure 15(a, b )  the steady solutions for A,, 
and Ake are sh0wn.t The E-branch of each solution is labelled. There are several 
important facts to keep in mind. In the steady state all the amplitude solutions must 

7 'l'ht: t:onvcwic*rit r i o t c i t i o r i  A, = A ( k , )  is  I I S O C I  Ii(*re. 

Ri = R(kj) 
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FIGURE 14. The function Y(E) for the case R,  = R,, R, = 0. 71 = 0.5, 
k, = 1, k, = 0.75. Note that E(Y) has five branches to its solution. 

simultaneously be on the same E branch. That is, A ,  cannot be on branch 5 if A ,  is on 
branch 3. So that, for example in figure 15, it is apparent that if A ,  is on branch 5 near 
Y = 0, where its amplitude is large, then A ,  must be nearly zero. The same, but 
reversed, situation occurs if the solution is on the third E-branch. In  addition consider a 
subcritical wave, q(k8) < 0. Although the existence of such a wave will not add to the 
multiplicity of the steady solutions, the subcritical wave will share the 2M + 1 multi- 
plicity of possible solutions with the supercritical waves. 

Let us examine figure 15 (a,  b )  in more detail. From (5.5) and (5.2) it follows that for 
a given branch 

which allows figure 15 to be continued to negative Y as shown schematically in 
figure 16 (Q,, b) .  For the wave with the larger q (and for more than two waves this holds 

Ak(- Y )  = - A k ( Y ) ,  (5.8) 
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FIQURE 15. (a) The steady-state solution for Ak (k = 1) aa a function of Y. Note the five branches 
of the soliition corresponding to the five branches of E( Y) in figiiiu, 14. ( b )  As in (a) except for 
A, (k = 0.75) which is the wave of higher q. 
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FIQURE 16. The hysteresis diagram for the wave amplitudes as a function of the Slowly varying 
forcing. Arrows show the solution trajectories as Y changes and the dots indicate amplitude 
jumps experienced a t  the critical forcing points Y ,  and Y, --. Please see text for a more complete 
description. 

true for the wave of largest q) ,  the continuation of branch 5 from large Y crosses the 
axis a t  the value A,, = - (an)& while Akl+ 0. 

It will be necessary to  examine the behaviour of the transient problem to determine 
which, if any, of the steady branches are stable but on the basis of the results of the 
investigation of free waves the essential result can be anticipated. For the free waves, 
Y = 0, the solution tended to the final state in which A2+ k (qz) )  while A ,  -+ 0. In  the 
present context that would imply that for small Y ,  where there is the greatest multi- 
plicity of solution, branch 5 ,  and its continuation branch 4, would be the stable branch. 
This turns out to be the case, as will be seen, but first let us examine the consequences 
of this result. 
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Consider a value of Y sufficiently large and positive so that the solutions for E ,  A ,  
and A, must be on branch 5. Now, as shown by the arrows in figure 16, let Y decrease. 
Examine figure 16(b) first. The solution will travel leftward on the lower number 5 
branch until Y = 0. At this point A ,  = - (q2)4. It then smoothly continues on branch4 
with A, decreasing in magnitude until the critical forcing Y,- is obtained. For larger 
negative values of Y the solution for A, cannot continue on branch 4. Since Y is de- 
creasing branch 3 is unavailable. We can guess therefore that a jumpin A,from branch4 
will occur upon further decrease of Y .  But to which branch will it jump? Branches 1, 
2 and 5 (upper) are available to it. If we guess (correctly as it turns out) that branches 1 
and 2 are unstable branches, the solution will jump to the upper branch 5 and continue 
on that track with decreasing Y .  The jump is indicated by the dots and steady theory 
clearly cannot describe that interval. If Y then increases the solution returns on the 
upper branches 5 and 4, as shown by the arrows, until Y = Yc+ occurs. At this point a 
similar quandary faces the steady solution and again we can imagine the jump a t  
Ye+ precipitating a sudden amplitude change from branch 4 to the lower branch 5.  The 
value of the jump in A ,  is, at Y,,, from about A ,  = 0-5 on the upper branch 4 to 
A, = -0-7. This implies a sudden increase, of 40%, of the wave amplitude and an 
equally sudden phase shift in A, of 180’. Note that the shift in sign of A,, which is 
sudden, lags the shift in sign of the forcing, i.e. Y must reach Yc+ before A, again 
changes sign. Again, provisionally accepting this as the correct picture, let us examine 
now the response of A,, the wave with the lower q. In  a richer spectrum all the waves 
with q’s less than the maximum q can be shown to share the qualitative behaviour to 
be described now. The solution for A,, as A,, starts at positive Y on branch 5. As 
Y -+ 0, A, follows branch 5 and vanishes, consistent with the free wave result. The 
inaccessibility of branches 2 and 3 means that A, can never obtain a fully blossomed 
state, which is formally possible but unstable. A t  Y = 0 and decreasing, A ,  has, 
apparently, two continuous choices available for quasi-steady solutions. It could 
continue symmetrically on branch 5 or smoothly change tracks to branch 4. Since all 
solutions must be on the same E branch it must clearly do the latter. The significance 
of this is twofold. First the slope of the A, ( Y )  curve is greater on branch 4 than branch 5 
so that as Y goes through zero A, will increase more rapidly with Y than it decreased 
toward zero. Referring to figure 15(a) shows that this effect is, however, numerically 
small. Second, of course, is the fact that after continuing on branch 4 a jump down to 
branch 5 will occur at  Y,-. Whereas the jump in A, was, algebraically, - 1.2, the 
jump in A ,  is - 0.3. The jump in the lower q A’s will always be smaller as long as the 
jumps occur between the ( 2 M +  1)th and (2M)th branch since by(5.2) (q- E )  becomes 
a progressively weaker function of E the greater (q - E )  becomes. It is left to the reader 
to retrace the A ,  versw Y solution path from negative to positive Y through the 
jump at  Y, ,  . 

It remains to be seen whether the behaviour described above will actually occur. 
Figure 17 shows the numerically calculated response of a two-wave field to the forcing 

(5.7) 

The two wavenumbers are k, = 1, k, = 0-75 with q, = 0-375, q, = 0.4965. At  t = 0, 
A,  = A,  = 0.1 and 7 = 0.5. The period of sweep along the Y axis was chosen to be very 
long (T = 4 x 1 07 in order to render the quasi-steady theory valid. Figure 17 shows that 
as expectctl t h c  solution for A ,  (ilnd A quickly eonvcrgcs to t)mnc.h 5.  As t inrreases, 

Y ,  = Y ,  = 0.15-0-3sin2nt/T. 
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FIGURE 17. The time history of two waves A ,  and A ,  with k, = 1, k, = 0 . 7 5 , ~  = 0.5. The wave 
forcing is Y ,  = Y ,  = 0.15-0.3 sin (27rt/T), T = 4 x lo8. The figure demonstrates the sudden 
amplitude changes experienced at Y,, = - Y,-. Note that the dominant wave changes sign and 
i n c w e s  in amplitude. The most unstable wave maintains its phase and sharply decreases in 
magnitude at Y,.  

Yk slowly decreases until, a t  the moment predicted by the quasi-steady theory, sudden 
jumps occur in both A, and A,. I n  the case of A, the jump is a diminishment, as 
expected, from the peak it attained on branch 4 while A, after a smooth but fairly 
rapid decline on branch 4 suddenly jumps up to branch 5 as predicted. A second jump 
is also shown at  t N 1700 as predicted again by the steady theory. On the other hand 
the maximum amplitude obtained by A, is somewhat larger than predicted by the 
steady theory. Even for T = 4000 there is a dynamical overshoot on branch 4 before 
and during the jump. This is quite likely due to the fact that A,+ 0 during the jump 
which allows A, a fleeting moment to increase. The minimum reached in the jump in 
A, is somewhat larger than the steady value would predict because during the finite 
period occupied by the jump Yk has increased to a point where the steady value of A, 
is larger than its value is directly at 5. The amplitude solutions, except in the jump 
periods, are thus reasonably well predicted by the quasi-steady theory. Numerous 
numerical calculations with different starting values of Yk were performed. In  all cases 
the solutions rapidly converged to branches 4 or 5 and the qualitative behaviour just 
described was reproduced. It therefore seems an intrinsic characteristic of periodic 
changes of the wave forcing that if it sweeps past I&,l the wave response to such a 
smoothly varying forcing will nevertheless exhibit sudden nearly discontinuous 
changes in the magnitude of each of the wave amplitudes. Furthermore, during these 
jump epochs the dominant high q wave passes through zero so that in the case depicted 
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x 

FIGURE 18 (a). For legend sea page 200. 

in figure 17 there is an interval of about twenty, linear e-folding times where, fleetingly, 
the wave of smaller q becomes the larger. After the jump event iq  concluded the high q 
wave quickly establishes its dominance. This, as we shall see, is to some extent sensitive 
to the equality of the wave forcing assumed and will be discussed more fully below. 

As q is decreased the values of q(k, q )  obtainable increase since the maximum q is 
1-7. Figure 18(a, b, c) shows the E( Y), A,( Y), A,( Y) steady solutions for the case 
7 = 0.1, k, = 1 ,  k, = 0.5, R, = R, = 1, where (q,,q,) = (0-495,0-855). The separation 
of the q’s on the E-axis is greater but the general nature of the steady amplitude 
response curves is quite similar to the more dissipative case of figure 15(a, b). The 
dynamical response to slowly varying forcing is, however, somewhat different. At this 
lower value of 7 there is a tendency for the free waves to oscillate for some time before 
reaching their steady values. That is, we can expect considerably more dynamica.1 
overshoot from this more lightly damped system. Figure 19(n, b) shows the response of 
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FIQURE 20. As in figure 19 except that the forcing period is 02. The response is once again 
periodic brit three forcing periods are required before the solution repeabs. (a) A(k, ) ,  ( b )  A(k,) .  
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the system to the forcing 

Ykl = Y,, = 0.18 sin (2nt/250). (5.8) 

The general nature of the response is as in figure 17 only now there is considerably 
greater range in the amplitude jumps due to the aforementioned dynamical overshoot. 
This is particularly evident in the response of A,. During its jump from branch 4 back 
to branch 5 the overshoot is sufficiently great to bring the amplitude of A, momentarily 
near zero. A, on the other hand springs up to a value of about 1.4, considerably larger 
than its steady, past-jump value of - 0.92. Once again the hysteresis response curves 
are valuable in predicting at what point dramatically large changes of amplitude will 
occur, but at  low 7 the steady theory consistently underestimates the magnitude of the 
amplitude jumps experienced by the waves. 

Examining figure 19 cannot help but suggest the thought of what might occur if the 
jump points &, were obtained before the solution could at all settle down. If the 
occasion for a jump thev finds the wave field in an unsettled state the starting values 
for different jump events might differ, leading to a continuously non-repetitive, or 
aperiodic, response. 

What I did therefore was to hold the forcing amplitude in (5.8) fixed and consider 
the response to forcing of ever higher frequency. At a forcing period of 125, half that of 
(5.8) the response was qualitatively as in figure 19, i.e. the response, though complex, 
was periodic with the period of the forcing. At a forcing period of 62.5, i.e. halved again, 
the solution is still periodic but experiences four separate subcycles (figure 20) before 
repetition and the period is about three times the forcing period. Decreasing the forcing 
period to 41 t units reveals a hint of aperiodicity. At a forcing period of 25-13 the 
solution to periodic forcing is strongly chaotic as shown in figure 2 1. It is important to 
point out that this parameter range of 7 leads to eventually steady waves in the absence 
of forcing and the occurrence here of aperiodicity is caused only by the presence of 
periodic forcing. Note too, that at these relatively high frequency forcings the response 
shows little evidence of the jump phenomenon. For that to occur the solutions must 
slowly track on the steady solution branches. Since this study is meant to be a prelimi- 
nary one, no exhaustive search has yet been made of the detailed dependence of the 
amplitude response on the forcing frequency. However, the results displayed here show 
that the dependence is likely to be significant even while the forcing periods are much 
longer than the linear e-folding times for instability. 

It is clear from the analysis given above that the nature of the wave amplitude 
hysteresis is determined primarily by the presence of the highest wave. In  particular 
the amplitude of the jump is determined by the A E  which exists between branch 4 
and branch 5 at the value of Y where d Y / d E  = 0 on the summit of branch 4. The 
larger this cleavage is in the Y ( E )  curve at that point the greater the jump will be. If 
the forcing amplitude, R,, of the waves are not equal then the Y ( E )  curve will vary 
accordingly. Consider the two-wave case. Then 

Consider what occurs as R,/R,  -+ 0, i.e. when there is very little forcing t t t  the doniinant 
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FIGURE 21. As in figures 19 and 20. However, the forcing period is now 25 t units. The response 
appears completely aperiodic. Although the forcing is simply periodic the wave response is 
non-repetitive ant1 chnotir. 
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FIGURE 22. The Y(E) curve in the case R,IR, = B Q 1. Except in the immediate vicinity of 
E = qn the curve bi approximated by the single-wave response curve. However, in a narrow 
region around E = qa, Y 3 0 and the free, maximum q wave emerges. "he dotted line is the 
continuation of the single-wave curve past E = qn. 

wave. For R2/R, = E 4 1 an approximation to (5.9) which is valid for all E f q2 is 

(5.10) 

which iu the single-wave response curve, and it is shown schematically in figure 22. 
On the other hand when 

E = q,+e, e < q2, (6.11) 

(5.12) 

Thus, consider E arbitrarily small but fixed. Then, as E + q2s e - t  0 and Y -f 0, dropping 
precipitously from its value qb  (qI - q,)/r,  at e $. E ( q 2  - q,). Outside this narrow region 
in E of order e(q2 - q,) the single-wave response curve should apply and therefore 

A ,  - Q+, 1 $. e 3. "(Qx-Q,) ,  A2 itE(q2-qI)Qt' (5.13) 

Outside the E = q2 region the dominant forced wave, when R, $. R2, will be the wave 
with the smuller q but the larger forcing. However, as e goes to zero, in particular as 

e Q 4 Q 2  - !I,), (5.14) 

then (5.15a, b )  

Thus when e -+ 0, i.e. when the forcing goes to zero, the role of the dominant and sub- 
ordinate waves are interchanged and A, p A,. A little thought shows that this is as 
it must be. For zero overall forcing the high q wave must become predominant. If  the 
ovcrall forcing is primarily n t  wavelength8 other than that of the maximum q those 
other waves will have O( 1 )  amplitudes while the maximum Q WBVC will approximately 
satisfy 

A ",ax (c7,Ilx - m - 0. 
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FIGURE 23. The two-wave response, k, = 1, k, = 0.76 at 7 = 0.5 to the forcing Ykl = 
0.16 sin (2nt/600): Yk, = O*lYKI. Note, 88 described in the text, the periodic interchange of 
dominance of the two waves. 

Since E will be forced to be other than qmax, A,,, will essentially vanish unless all the 

It is important to note that the AE, in the small R,/R, case, between branches 4 
and 5 will be exceedingly small. Hence the A ,  wave will show little or no jump in 
amplitude for 8 =g 1. Figure 23 shows the response of the two-wave system k,  = 1, 
k, = 0.75, 7 = 0.5 for the case where 

(5.16a, b) 

so that R,/R, = 0.1. Figure 23 shows that A, and A ,  interchange intervals of dominance. 
When Yk+O A ,  rises to its free wave maximum q$ and A ,  vanishes. When Yk is 
O( 1) it is A ,  that is forced to be dominant. It must be stressed that this interchange of 
dominance (and hence the periodic alteration of the wavenumber of the finite-amplitude 
state) is here accentuated by the smallness of R,/R,. As R,/R, increases towards unity 
the previous cases are obtained where, over most of the cycle, the high q wave 
dominates. 

Yk+ 0. 

Yk, = 0.16 sin (2nt/600), Ykl = 0.016 sin (2ntl600) 

6. Final remarks 
Two important qualitative notions are suggested by the results of the present paper. 

First, the instability, through interaction with the mean flow, of all the long 
waves with respect to the wave of maximum q, will tend to concentrate the long wave 
spectrum in a single wave, or on occasion in two conjugate waves. To some extent this 
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result is model dependent, for the dynamics of shorter baroclinic waves will un- 
doubtedly allow energy transfers by wave-wave interaction. Hence some leakage will 
occur to other waves. To the extent that the primary baroclinic interaction is between 
each wave and the mean flow the tendency for a sharpening of the long-wave spectrum 
should be valid. Thus finite-amplitude single-wave theories are not as artificial as might 
be imagined. 

The most important idea this study suggests, however, is that the wave of maximum 
linear growth rate is only fleetingly the dominant wave in the finite-amplitude free 
wave response. It rapidly gives way to the wave of maximum q(k )  in the spectrum. 
This latter wave may have a much lower growth rate but its ability to consume more 
of the total available potential energy gives it a long-term advantage over the wave of 
maximum growth rate. One virtue of the present simple model is that the simplicity 
of the mathematics allows explicit representations of both the growth rate dependence 
on k and of the function q(k) .  However, that very simplicity makes the generalization 
of the wavenumber selection principle necessarily heuristic. In  the present case the 
growth rate maximum occurs at the maximum of k2q(k), a number obtainable from 
linear theory. The maximum of q(k)  is thus just dependent upon the ratio k2q(k)/k2. 
This particular result depends on the simplicity of the model and cannot be generally 
used. If it could be, linear theory alone would be sufficient to  determine the non- 
linear selection principle and that would be absurd. The proper generalization of the 
above criterion is most likely as follows. Consider the general amplitude equation for a 
single baroclinic wave. Its form will be 

where M is some operator quadratic in A and y is an 0(1) constant. Experience has 
indicated that, at least in the steady state, 

M ( A ,  k )  = A2kZN(k) ,  (6.2) 

where N ( k )  is the so-called Landau constant. I believe that the function 

is the proper generalization of the q(k)  of this paper. In  the present study, because of 
the relatively weak dependence of the wave field on k the function N has turned out to 
be independent of k.  This is not generally the case, as can be seen from earlier studies 
(Pedlosky 1970, 1971). I therefore suggest that, rather than fixing on the wave of 
maximum kc,(k), the fundamental wave is the wave of maximum c o / N ) .  To be sure, 
this is a nonlinear selection principle and much less easy to apply than the linear 
principle. On the other hand it requires the consideration of only single-wave baro- 
clinic dynamics. 

Whether this particular, heuristic suggestion is correct or not, I should like to stress 
that the present study at least serves as a strong counter-example to the more tradi- 
tional view which regards the wave of largest growth rate as the dominant wave. This 
will be true only initially, so t ha t  the idea of its dominance, while init.iully correct, is 
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not uniformly valid in time. Thus nonlinear calculations of baroclinic flows which 
display wave dominance at  n-arenumbers other than that of maximum linear growth 
are not, inconsistent with the theory of baroclinic instability. Such results are simply 
in accord with the divergence in finite amplitude between the wavelength of maximum 
growth and the wavelength which maximizes co/N2. 

The results of $$4 and 5 show that the response of the waves to periodic, ‘seasonal’ 
changes in either the basic temperature gradient or the wave-forcing is highly complex. 
Although the forcing is periodic the response may be aperiodic, i.e. no two ‘seasons’ 
need be alike if the relaxation time for nonlinear adjustment is long enough compared 
with the seasonal period. The precise frequency criterion for the advent of aperiodicity 
to periodic forcing has not yet been determined. It is significant, though, that this 
nperiodicity depends only on the simplest wave-mean flow interaction dynamics and 
does not require exotic, ‘climatic’ mechanisms. It is also significant that the aperiodi- 
city occurs for those waves which intrinsically, i.e. in their free states, have asymptotic- 
ally steady amplitudes. 

Finally, the forced wave problem itself exhibits a wide range of fundamentally 
interesting phenomena. The quasi-steady problem inherently responds to smooth 
changes in the forcing smoothly except at critical values of the forcing. At  these points, 
sudden changes, either of increase or decrease, in the wave amplitude occur. Sudden 
changes in phase of the dominant wave also are manifested whereby the position of a 
wave crest and trough are suddenly interchanged. One deficiency in the model intro- 
duced for the sake of simplicity is the stationarity of the free waves, i.e. the mean flow 
is purely baroclinic so that the unstable waves have zero real phase speed. This makes 
them particularly sensitive to essentially stationary (but slowly varying) wave forcing. 
The relaxation of this condition will require a more complex model. I present here some 
preliminary calculations to indicate the general nature of the changes to be expected. 

If a barotropic mean flow of order A4 is included in the theory so that mean advection 
of perturbation potential vorticity is as important as its temporal development, it can 
be shown that the equation for the steady response to wave forcing will now be, instead 
of (5.2), rather 

TI 

The new parameters in (6.4) are o,, which is the advection velocity scaled by the 
imaginary part of the linear phase speed, and E ,  = &(w, /k) .  The relationship (6.4) 
is now complex so that E = 1 A,\,. The fact that (6.4) is complex reflects the fact that 

there is no steady solution (aside from A ,  = 0) as Yk + 0. Instead, there the free waves 
will be slowly propagating. Nevertheless the steps leading to (5.3) and (5 .5 )  can be 
obviously generalized to 

k 

A plot of Y versus E for the two-wave case k, = 0.989 (ql = 0-5) and k, = 0.373 
(qn = 0.8), w, = 0.2 is shown in figure 24. There is again a multiplicity of solutions and 
the multiplicity is the same AS before, i.e. 5 in the two-wave case. However, now the 
range of multiple solutions has a lower as well as an upper critical value of Y .  It seems 
unlikely that, starting on branch 5 ,  the energy should jump for low Y to the sinall 
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FIGURE 24. The Y(E) curve in the case where thefree waves are non-stationary. ML-tiple steac y 
solutions exist but now a maximum as well as a minimum forcing is required. For small forcing 
only wcak steady solutions are possible and these are likely to be supplanted by travelling 
unstable waves. 

values of branch 1. It seems more likely that the low Y response for o, # 0 may be 
dominated by the free waves (and probably the high q wave). This would be consistent 
with the results at Y = 0 of the study of 5. However, this will require further study. 

This research was supported, in part, by a grant from the National Science Founda- 
tion's Office of Atmospheric Science. 
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